
University of Potsdam Murphy Sünnenwold
September 1, 2022

Introduction to Fractals and Holomorphic Dynamics

for Scientific Computing in Mathematica

Contents
1 Introduction 2

2 Fractals & Holomorphic Dynamics 3
2.1 Holomorphic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fractal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Definition of a fractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Identifying fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 The Mandelbrot set & Julia sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Newton fractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 The bifurcation diagram of the logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The logistic map in the Mandelbrot set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Conclusion 11

Mathematica Code 12

Bibliography 13

List of Figures 13

Abstract
Fractals are beautiful shapes that achieve to reach nearly everyone in the scientific world

at least once in their career. In a way are they complex and simple at the same time and
fascinate not only mathematicians but also artists and other scientists. In this article I want
to introduce you to the exciting world of fractals and holomorphic dynamics. I will cover the
necessary mathematics like definitions and examples at a beginner or rather freshman level,
and get practical by covering a few of the most important and well known fractals. I will not
explain things like complex numbers or how exactly Newton’s method works though. There
are many great resources on those topics online. All the visuals are made using Wolfram
Mathematica 13. This article was written in the context of the university course "Scientific
Computing in Mathematica" at the University of Potsdam.
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1 Introduction

In a way are fractals an antipole towards calculus.
While in calculus things are assumed to get smoother and
smoother the closer you get, fractal geometry to some ex-
tent celebrates the roughness in nature. Fractals are a
beautiful blend between simplicity and complexity and the
mathematically constructed ones often include infinitely
repeating patterns. In particular, computer scientists like
me find them very fascinating given the fact that it takes
so little code to create images of fractals that are way more
intricate than anything humans could ever create with pen
and paper.
I feel like nearly everyone in the scientific world has heard

of the Mandelbrot set and seen a picture of it at least once
in their life. It is magical and fascinates people, but only
a few actually know the correct definition of a fractal. At
least not to the one Benoît Mandelbrot the father of frac-
tal geometry, had in mind. Mandelbrot was the one who
coined the term "fractal" in 1975 and wrote about them in
depth in his book "Les Objets Fractals: Forme, Hasard et
Dimension" ("Fractals: Form, Chance and Dimension")
[3]. Mandelbrot based the term on the Latin "frāctus",
meaning "broken" or "fractured". This also shows just
how young the fractal geometry still is. While Mandel-
brot truly was a visionary and used the technology of his
time to make great scientific progress, many other math-
ematicians also deserve credit for laying the foundations
for his work in the centuries preceding him. To get the
full picture, it helps to get familiar with the relevant work
of Karl Weierstrass, Georg Cantor, Felix Hausdroff, Gas-
tion Julia, Pierre Fatour and Paul Lévy [1]. Not only to
make Mandelbrot’s work clearer but to see its connections
to other branches of mathematics as well. Some of those
names will also reappear later in this article.
A common misconception is that fractals have to be

perfectly self-similar, meaning that the shapes contain a
smaller but exact replica of themselves like the Sierpinski
triangle.

Figure 1: Sierpinski triangle (drawn to step 7).

But fractals go way beyond just self-similar fractals.
They aren’t even limited to geometric patterns, but can
also describe processes in time [5]. Self-similar shapes give
a basis for modeling the regularity in some forms of rough-
ness. Mandelbrot had a much broader concept in mind
though. One motivated not by beauty but more by a
pragmatic desire to model nature in a way that captures
roughness [16]. And in fact, have fractals a broad range
of applications nowadays. For example, are many natu-
ral phenomena known to have fractal features which help
study them. For instance, are the fractal properties of
leaves currently being used to determine how much car-
bon is contained in trees. Additionally are there many
applications in technology and fractal art is a big topic in
the mathematical creative world [5]. Fractals are also par-
ticularly important to chaos theory with many overlapping
research topics.

Figure 2: Romanesco broccoli showing fractal features [9].

In this short article, I want to give you an introduction
to fractal geometry and a topic known as "Holomorphic
Dynamics" which you will recognize as one of the essen-
tial pieces that shows up in many of the most important
fractals. I will explain what fractals are, show how to iden-
tify fractals and go into detail and apply the theoretical
basis to a few of the most well-known fractals. Namely,
the Mandelbrot set and Julia sets, Newton’s fractal and
the bifurcation diagram of the logistic map. My work will
build up to a fascinating connection between the bifurca-
tion diagram of the logistic map and the Mandelbrot set
to excite and inspire you to continue your own research.
All the visuals are implemented in Wolfram Mathematica
13 and you can find the code at the end.
Now: What are fractals? How do I recognize them? How

do you generate them? And how do I do all those things
in Mathematica?
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2 Fractals & Holomorphic Dynamics

2.1 Holomorphic Dynamics

As already announced I first want to introduce you to
holomorphic dynamics.
The "Holomorphic" in "Holomorphic Dynamics" simply

refers to functions that have a complex number input, a
complex number output (f : C → C) and which are also
differentiable, which in this case (roughly speaking) means
that going from input to output looks like scaling and ro-
tating (see figure 3) [15] [8] [4]. This includes most of
the basic functions. For example polynomial, exponential,
trigonometric functions and any combination of them:

z2, ez, sin(z), . . .

The "Dynamics" on the other hand in this case refers to
applying this function over and over creating a sequence of
numbers and seeing what happens over many iterations.
Which can be expressed as something like this:

zn+1 = f(zn)

The part that is important to fractals is that dynamics
like these can resolve (after many iterations) into a few
different states. They can either result in a cycle of an
arbitrary length with repeating values (e.g. z0 → z1 →
z2 → z0 a cycle of length 3), converge to a single point
(limi→∞ zi = a ∈ C), diverge (converge to infinity) or
show bound chaotic behavior that goes on forever.
Exactly when visualizing when these possible behaviors

arise for a holomorphic function applied on different start-
ing values you often get some kind of fractal pattern.
To make things clear let us consider the following exam-

ple of a holomorphic function f as a dynamic system.

f : C → C, f(z) = z · eπ
2 i, zk+1 = zk · eπ

2 i

For any input z0 ∈ C, creates f a four-cycle by rotating
the complex number in the complex plane 90° counter-
clockwise four times and landing right where z0 started.

z0
f−→ z1

f−→ z2
f−→ z3

f−→ z0

This can easily be shown with Euler’s identity eπi = −1.

f(z0) = z1 = z0 · e
π
2 i

f(z1) = z2 =
(
z0 · e

π
2 i
)
· eπ

2 i

f(z2) = z3 =
((
z0 · e

π
2 i
)
· eπ

2 i
)
· eπ

2 i

f(z3) = z4 =
(((

z0 · e
π
2 i
)
· eπ

2 i
)
· eπ

2 i
)
· eπ

2 i

= z0 · e2πi = z0

For example with z0 = 1:

f(1) = i f(i) = −1 f(−1) = −i f(−i) = 1

On the other hand a simple divergent function for example
is f(z) = 4z.

Figure 3: Example of a holomorphic function applied on a grid of points.

2.2 Fractal geometry
Fractal geometry is the branch of mathematics that originates fractals and deals with their definition and characteris-
tics. It in itself lies in the mathematical branch of measure theory [5]. To build a fundamental understanding of what
fractals are and to be able to really appreciate the fractals I will introduce to you later we first have to understand
the proper definition of a fractal and how we can recognize them.
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2.2.1 Fractal dimension

Fundamental to all fractals by underlying the definition
itself is the so-called fractal dimension. The fractal di-
mension is a concept that lets us measure the roughness
of a shape on different scales. More formally is it a ratio
providing a statistical index of complexity comparing how
details in a pattern change with the scale at which they
are measured [6].
The fractal dimension can change based on how far you

are “zoomed” in. Most definitions of a fractal dimen-
sion therefore just focus on what limit this dimension ap-
proaches for a given shape the closer we get. This only
works for infinite fractals that we constructed ourselves
tough and not for naturally occurring fractals. With nat-
ural fractals at some point, you will just hit the scale of
atoms. For an applied setting in nature, it is therefore
most common to just look at a wide range of scales and
see if the dimension stays roughly constant. With different
techniques, we can determine or measure a fractal dimen-
sion for nearly every shape. Some analytically and some
numerically. There are many differently defined fractal
dimensions.
To begin with, I want to introduce you to the fractal di-

mension with 4 perfectly self-similar shapes, three of which
are not even fractals but will help us gain an intuition for
what the fractal dimension is. The shapes are a line, a
square, a cube and the already shown Sierpinski triangle.
These shapes are self-similar because a line can be bro-

ken up into two smaller lines, each of which is a perfect
copy of the original just scaled down by half. A square can
be broken down into four smaller squares scaled down by
half. A cube can be broken down into eight smaller cubes
again where each one is a scaled-down version of the origi-
nal. And lastly, the Sierpinski triangle is made up of three
exact copies of itself where the side length of the smaller
copies is exactly one-half of the original length. To gen-
eralize the way we talk about measuring the length, area,
volume or their 2.5-dimensional equivalent for example it

is most intuitive to talk about mass instead. When scal-
ing down the line by a half the mass also scales down by a
half

(
M
2

)
. If we scale down the square by a half the mass

scales down by a fourth
(

M
4 = M ·

(
1
2

)2) because it takes
four copies of the smaller square to form the original one.
Likewise if you scale down the cube by one half, the mass
is scaled down by one eighth

(
M
8 = M ·

(
1
2

)3). If we now
apply the same reasoning to the Sierpinski triangle it only
makes sense that if we scale down the Sierpinski triangle
by one-half its mass gets scaled down by one-third

(
M
3

)
because it takes three copies of the scaled-down versions
to form the original triangle.
What stands out is that for the line, square and cube the

scaling factor of the mass is this nice integer power of the
scaling factor 1

2 . In fact, is that exponent the dimension
of each shape!
Therefore what it means for a shape to be two-

dimensional is that if you scale down its length L by a
factor of s (s · L) its mass M will be scaled down by that
factor raised to the second power (s2 · M). Analogously
for three-dimensional shapes (s3 · M). If we now apply
the same idea to the Sierpinski triangle we know that its
dimension should fulfill:(

1

2

)D

=

(
1

3

)
Because the Sierpinski triangle is self-similar we know that
if we scale the side length by half the mass scales by a
third. We can solve this equation to determine the dimen-
sion of the Sierpinski triangle:

2D = 3 ⇒ D · log2 2 = log2 3 ⇒ D ≈ 1.585

In general, is it possible to have shapes with any positive
real number as a dimension. The fractal dimension of the
shapes we determined here is the Hausdroff dimension.

Figure 4: The four shapes and the scaled down versions for s = 1
2 .
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2.2.2 Definition of a fractal

Once you have understood what a fractal dimension
is the definition of a fractal is quite simple. Man-
delbrot defined fractals as "set[s] for which the Haus-
dorff–Besicovitch dimension strictly exceeds the topologi-
cal dimension."1 [5].
For all traditional geometric shapes, the Hausdroff di-

mension is an integer agreeing with the usual sense of di-
mension we know, which is formally called the topological
dimension[7]. For example, is the topological dimension
of the Sierpinski triangle one and the Hausdroff dimen-

sion as we saw log2(3). The topological dimension of the
line, square and cube are equal to the Hausdroff dimension
(one, two and three). Therefore are these shapes not frac-
tals. For the Sierpinski triangle does the Hausdroff dimen-
sion of ≈ 1.585 strictly exceed its topological dimension of
1 which makes it a fractal.

The Hausdroff dimension has a proper definition that
generalizes to all the different shapes but is just to tech-
nical too include here.

2.2.3 Identifying fractals

Because the definition of a fractal heavily relies on the
fractal dimension the task of identifying fractals and ana-
lyzing if a given shape is a fractal mainly reduces to the
task of determining the fractal dimension of a given shape.
Because the examples I choose in 2.2.1 were chosen for

clarity, and the scaling unit and ratios were already known
ahead of time I haven’t told you anything about how we
determine or rather measure the fractal dimension of arbi-
trary shapes which are not self-similar like the coastline of
Britain as a very famous example. We already know that
Mandelbrot used the Hausdroff dimension to define frac-
tals but there are several other formal mathematical defi-
nitions of different types of fractal dimensions. Although
in some cases all these dimensions coincide, in general,
they are not equivalent but often easy to implement algo-
rithmic approximations [6]. The one I want to show you
and use to identify fractals is the Minkowski dimension or
also known as the box-counting dimension. It coincides
with the Hausdroff dimension in many cases and in some
sense just counts using boxes instead of balls.
The general idea goes as follows: For a 2D image of a

shape, we count how many boxes of different-sized grids
touch the shape. This gives us a kind of measure for how
details of a shape change with its scale. Note that scaling
down the grid (size of the individual squares) is equivalent
to scaling up the shape itself. The number of boxes N
depends on the scaling factor and will follow some kind of
polynomial with the dimension of the shape as the expo-
nent.

N(s) = c · sD

Because figuring out the exponent of a polynomial is hard
we can instead take the logarithm on both sides. That

way the dimension drops down from the exponent.

logN(s) = log c+D · log s

That means if we plot N over s on a log-log plot the di-
mension will be the slope of the line.
Additionally, instead of working with the limit D =

lims→∞
logN(s)
log s we sample values of N for a few different

values of s that work for the size of our image and fit a line
through them. This gives a good enough approximation.
The land frontier of Germany for example is not self-

similar. We can approximate its Hausdroff dimension by
measuring its Minkowski dimension. The log-log plot gives
us a clean fit which means that the fractal dimension of
the image is very constant over many different scales.

Figure 5: The log-log plot for measuring the Minkowski
dimension of the frontier of germany.

For the used image the empirical dimension of the land
frontier of Germany turns out to be 1.21 which is close to
1.15 the value Mandelbrot himself calculated. [13].

1Although this turned out to be a bit too restrictive for him in the following years guiding him to simplify the definition a bit.
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Figure 6: Two examples of the number of boxes touched by the land frontier of Germany for different sized grids.

2.3 Fractals

With a solid foundation on what fractals are I now want
to show you four of the most well-known fractals and tell
you about the math behind them.
In general, can fractals be categorized by the different

techniques for generating them. Apart from the ones
which emerge from simple geometric rules which are called
Iterated function systems (IFS) like the Sierpinski trian-
gle I will be focusing on the most common ones which are
non-trivial: Escape-time fractals and one Strange Attrac-
tor [5]. Escape-time fractals are generated by iterating a
formula on each point in a given space. If a point diverges
as the formula is iterated, it escapes otherwise, it remains
bounded. To get an image we color each point based on
whether the system remains bound or not and if not how
fast it diverges. The majority of relevant Escape-time frac-
tals rely heavily on holomorphic dynamics as you might
have already guessed. Strange Attractors are attractors

called that have a fractal structure [2] while attractors
are roughly speaking regions that attract points moving
around a space according to some fixed law which causes
them to stay bounded in that region and sometimes bunch
up.

Looking again at the general structure of a dynamic sys-
tem zk+1 = f(zk) we can see that there are two major
things that can be changed as input to have an effect on
the behavior of the system. We can change the seed value
z0 which is the first value that gets plugged into our func-
tion f or we can change the function itself. From that
arise two fundamental ways in which we can visualize such
a system. We can have a fixed function and change the
seed value based on the coordinate (pixel of our image) or
we can fix the seed value and change the function based
on the coordinate.

2.3.1 The Mandelbrot set & Julia sets

The Mandelbrot set named after Benoît Mandelbrot and
its corresponding Julia sets named after Gaston Julia are
by far the most well-known fractals. They are Escape-time
fractals and their iterated holomorphic function called the
quadratic map looks like this:

zn+1 = z2n + c, zn, c ∈ C

The Mandelbrot set and Julia sets of the quadratic map
are in a way different interpretations or visualizations of
the same math. For the Mandelbrot set we have one seed
value (z0 = 0) and are altering the quadratic map by

changing c based on the coordinate. For a Julia set we
are now fixing the function (c = const.) and change the
seed value z0 based on the coordinate. This leads to a
Julia set for every c ∈ C. For both, we are coloring the
corresponding point black if the iteration stays bound (ei-
ther in a cycle, at a fixed point or in a chaotic but bounded
sequence) or some other color or gradient if and how fast
the system diverges to infinity. What helps a lot with the
computation is that mathematicians have shown that for
∥zn∥ > 2 the system will definitely diverge. This is the
iconic Mandelbrot set:
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Figure 7: The Mandelbrot set.

Remember: All the black regions are where the system
stays bound. To get a feel for it we can look at some
iterations.

Figure 8: A close-up of the Mandelbrot set with the first
50 values of the quadratic map (z1, . . . , z50) for

c = −0.6− 0.26i.

As we can see for c = −0.6 − 0.26i the quadratic map
converges to a fix point.

Figure 9: A close-up of the Mandelbrot set with the first
50 values of the quadratic map (z1, . . . , z50) for

c = −1 + 0.1i.

For c = −1 + 0.1i the quadratic map results in a two-
cycle.
More generally does the quadratic map have an attrac-

tive fixed point for all the parameters c in the main car-
dioid which is the biggest black bulb in the center. The
system always converges to a single point in that cardioid.
The second biggest circular bulb left to the main cardioid
corresponds to parameters for c which all end in a cycle of
period two. Likewise, do all the big bulbs correspond to a
specific attractive n-cycle. All these interior components
of the Mandelbrot set which have an attractive periodic
cycle are called hyperbolic components.

Figure 10: Periods of the hyperbolic components of the
Mandelbrot set [12].

The Julia sets work in the same way. Now c is fixed and
the resulting behavior of the quadratic map for different
values of z0 is examined.
Although I also sometimes used the term Julia set for

referring to the specific image of the fractal we get for a
given c one point I want to make clear is that the term
Julia set actually has a much broader meaning going way
beyond the z2+c case. The term also does not refer to the
black region of the shape itself as many think but describes

7



its boundaries.
Somehow something is very fundamental about the Man-

delbrot set. Even π and the Fibonacci sequence show up

in it [11]. Moreover, the Mandelbrot set itself even shows
up in some other fractals.

Figure 11: The Mandelbrot with the iteration for c = −0.5 + 0.5i and the corresponding Julia set

2.3.2 Newton fractal

The Newton fractal originates from and is named af-
ter Newton’s method (also known as Newton-Raphson
method) for finding the roots of a holomorphic function
f2. It is an algorithm where (under a few assumptions)
any zk+1 is closer to one of the roots of f than its predeces-
sor zk [14]. The fractal emerges when applying Newton’s
method to all the points of the complex plane for a given

function like f(z) = z3 − 1 and coloring the original co-
ordinate based on the root it landed on. One step with
Newton’s method looks like this:

zk+1 = zk − f(zk)

f ′(zk)

f(z) = z3 − 1 has three complex roots: 1, e
2π
3 i and e−

2π
3 i.

Figure 12: Newton fractal for f(z) = z3 − 1.

2Even though the Newton fractal is named after Isaac Newton he knew nothing about this fractal.
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2.3.3 The bifurcation diagram of the logistic map

The logistic map is a polynomial function (mapping) of
degree 2 and is the archetypal example of how complex
and chaotic behavior can arise from simple non-linear dy-
namical equations [10]. Mathematically the logistic map
looks like this:

xn+1 = r · xn(1− xn), xn ∈ [0, 1], r ∈ [0, 4]

Notice that this is not a holomorphic function anymore.
xn and r are both real-valued variables. Additionally, we
will only look at values of r in the range of 0 to 4 where
xn will be bounded between 0 and 1.
Like with all the other fractals so far the logistic map

also forms a sequence. Instead of visualizing the different
behaviors that can arise (Mandelbrot/Julia set: bound-
/unbound, Newton fractal: converges to point a0/a1/...)
we now visualize the concrete values xn the system results
in for a given input. We already know that for any given
r ∈ [0, 4] xn is bound. The remaining behaviors the system
could show are the convergence to a single point, cyclic be-
havior and chaotic behavior. The plot of the logistic map
with r on the x-axis and the values of the state the system
approaches on the y-axis is called the bifurcation diagram
of the logistic map. The seed value x0 ∈ (0, 1) has over
the many iterations no influence on the eventual state of
the system and can therefore be picked randomly. The
logistic map is a Strange Attractor and forms attracting
cycles for any x0 ∈ [0, 1].

Figure 13: The bifurcation diagram of the logistic map
for r ∈ [0, 4].

The bifurcation diagram shows that for r ∈ [0, 3] the sys-
tem converges to a single point. For values of r below 1
always to 03. Some examples showing xn change with each
iteration for a specific r make this very clear.

Figure 14: The logistic map converging to 0.375 for
r = 1.6 with arbitrary x0 = 0.5.

For 3 < r ≤≈ 3.45 the system always ends in a two-cycle
creating the two big branches or in other words the first
big bifurcation in the bifurcation diagram.

Figure 15: The logistic map resulting in a two-cycle
(0.45, 0.84) for r = 3.4, x0 = 0.5.

Going even further in the interval roughly from 3.45 to
3.55 after a few iterations the values stay bound in a four-
cycle.

Figure 16: The logistic map resulting in a four-cycle (0.5,
0.88, 0.38, 0.82) for r = 3.5, x0 = 0.5.

After that chaos with a few regions of order with n-cycles
emerge.

Figure 17: The logistic map resulting in chaos for
r = 3.6, x0 = 0.5.

The bifurcation diagram of the logistic map shows self-
similarity. For all of the non-chaotic points for example
at the three arms around r ≈ 3.82 the diagram contains
a shrunk and slightly distorted version of the whole dia-
gram. The bifurcation diagram is an example of the deep
and ubiquitous connection between chaos and fractals [10].

3Originally the logistic map and its bifurcation diagram come from biology and were used to model the population of species with r
being the growth rate. The r < 1 case refers to the case where the growth rate is so low that a given population goes extinct.
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Figure 18: The bifurcation diagram of the logistic map for r ∈ [2.9, 4].

2.4 The logistic map in the Mandelbrot set

Similar to how the actual iterated values of the logistic
map are directly plotted to create the bifurcation diagram
we can extend the plot of the Mandelbrot set into a third
dimension to include the data about the values zn takes
eventually after many iterations. Because we work with

complex functions which we can only visualize in a plane
we have to reduce the values to a real-valued number that
we can visualize in a single dimension. In my demonstra-
tion I simply reduce the complex numbers to their real
part (Re(c ∈ C)).

Figure 19: The Mandelbrot set in 3D.
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The view from the top (Figure 20) shows the normal im-
age of the Mandelbrot set we are used to.

Figure 20: The Mandelbrot set in 3D - top-down view.

The intersection of the Mandelbrot set with the real axis
is precisely the interval

[
−2, 1

4

]
. If we look exactly at that

slice (Figure 21) we are able to make a fascinating obser-
vation. A linearly transformed version of the bifurcation
diagram of the logistic map is part of the Mandelbrot set!

Figure 21: The Mandelbrot set in 3D - slice at Im = 0.

3 Conclusion

Working with fractals and visualizing them mostly comes
down to brute force calculations but they are truly beau-
tiful and in some way philosophical shapes. Simple rules
can create phenomenal complexity which we humans could
never draw with a pen and a piece of paper. What makes
them even more fascinating to me is the fact that frac-
tals come from a time when mathematicians did not even
have the computational power to visualize what we are
seeing today and what I showed you in this small arti-
cle. Additionally do fractals not just arise naturally in
nature but they are so common that a fractional fractal
dimension seems to be the core differentiator between ob-
jects that arise naturally and those that are human-made.
Like Mandelbrot said "beautiful, damn hard, increasingly
useful. That’s fractals."[5].

There is much more to learn and discover out there I
could get a small glimpse at but just could not cover in
this short article. Like the title says this is meant as an
introduction. It is meant to inspire and encourage you to
explore. I want you to ask yourself: "Why do fractals even
occur in the first place?". Let me tell you: It is not just
because math is funky sometimes. Mathematicians have
actually built up a solid understanding of what they are
and why they emerge. I hope I could spark your interest
to browse the internet and dive deep into the wonderful
field of fractal geometry. Lastly I want to emphasize how
much this article was build upon the videos from Grant
Sanderson from 3Blue1Brown (you can find his videos here
[16] [15] [17]).
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Finally two more beautiful fractals:

Figure 22: Julia set of the quadratic map for c = −0.512511498387847167 + 0.521295573094847167i.

Figure 23: Close-up of Mandelbrot set around −0.836 + 0.229i.

Mathematica Code
The code for all the visuals written in Wolfram Mathematica 13 can be found on my website: murphy-in.space.
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