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Abstract

The performance of facial landmark detection algorithms on static photos has recently been as-
tounding. In videos with motion blur, these algorithms, however, are not very reliable and lack
accuracy. Moreover, modern facial landmark detection algorithms struggle to produce factual find-
ings because of the absence of structural information. In this work, we implement a Convolutional
Neural Network (CNN) model for recognizing facial landmarks based on images of faces and apply
it to video inputs using the Viola-Jones algorithm for face detection. The performance of the model
is evaluated on the training dataset from the Kaggle Facial Keypoints Detection competition itself,
which consists of 7049 labeled images and on labeled videos from the 300-VW dataset. Our experi-
mental results show an accuracy of about 91% on the dataset and a 65% accuracy with an absolute
error of 2.9 for selected videos from the 300-VW dataset that match our intended application of
detecting the facial landmarks on webcam input.

1



1 Introduction
In visual communication, the face plays a vital role. Humans can interpret a great deal about another person’s
intent, identity, and emotion just by looking at their face. In computer vision, the localization of the fiducial
facial keypoints is typically a crucial stage in the automatic extraction of that facial information. Many facial
analysis techniques such as face alignment, face modeling, face recognition, head pose tracking, facial expression
tracking or recognition, face verification or authentication, gender or age recognition etc [31], are constructed
depending heavily on the information provided by these facial keypoints. For facial recognition, to "frontalize"
the face and help eliminate the large within-subject differences and increase recognition accuracy, landmark
positions on a 2D image are typically integrated with a 3D head model.

Facial landmark detection algorithms strive to recognize the locations of the facial landmark points auto-
matically on videos or images. The keypoints are mainly the dominant points that describe either the specific
location of a face component, such as the corner of the eye, or an interpolated point that connects the dominant
points surrounding the facial contour and facial component. However, facial landmark detection still remains a
challenging problem for several reasons although many efforts have been made lately. Even the state-of-the-art
algorithms fail to identify the landmarks properly, due to presence of facial occlusions, different expressions or
extreme pose variations, and different illumination settings.

Predicting facial landmarks on live webcam input is the goal of this work. This is accomplished by first
training a CNN model on a collection of face photos including the x- and y-coordinates of 15 important facial
landmarks to predict these coordinates in a given image, and then extending to conduct facial landmark detection
on a live video using face detection and the model. Following the major facial landmarks as the subject moves
in real-time is required once the face has been recognized.

2 Related Work
For the purpose of detecting facial landmarks, several traditional methods have been put forth in the literature
during the past few decades. As component detectors, numerous individuals implemented SVM [2], Adaboost
[22], or random forest [1] classifiers, and detection was based on local picture features. Methods for detecting
facial landmarks are classified into two types: regression-based methods and template fitting methods.

Regression-based methods often use picture attributes to explicitly estimate landmark locations through re-
gression. With random forests and support vector regressors, respectively, Dantone et al. [10] and Valstar et
al. [30] predicted facial landmark points from local patches using regression-based methods. Cao et al. [5] and
Burgos-Artizzu et al. [3] both used pixel-difference features in cascaded fern regression. Random regression
forest was used by Cootes et al. [7] and Yang et al. [34] to determine the location of a landmark using a local
picture patch containing Haar-like features.

On the other hand, during training, template fitting methods try to learn a shape model and fit input photos
during testing. The original template fitting methods were developed by ASM [9] and AAM [8]. The shape
of the face is represented in ASM [9] by a linear combination of fundamental shapes learned by PCA, and the
appearance of the face is modeled by several pre-trained templates. When it comes to AAM [8], the shape
representation is comparable to that of ASM, while the appearance is described by PCA using a regular coordi-
nate system to avoid shape alterations. Based on the template fitting methods, face detection, facial landmark
detection, and pose estimation can all be handled simultaneously, as demonstrated by Zhu and Ramanan [37].

Figure 1: Three-level cascaded convolutional networks proposed by Sun et al. [26]

Deep learning algorithms significantly improve the accuracy of face landmark detection as they are used more
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and more in computer vision tasks. These techniques frequently frame the landmark task as a regression issue
and the strategy used most frequently is coarse-to-fine. Typically, cascaded CNN models are used to achieve
this, or an initial prediction and image pixel input is used. Sun et al. [26] have presented the algorithm of
cascaded models that is most representative. A pre-partitioning of face pictures into various parts is necessary
for the cascaded CNN, and each of these portions is processed by a distinct deep CNN. The outputs are then
averaged and routed to several cascaded layers in order to process each facial landmark separately (Figure 1).

A multi-task learning approach for both face attribute estimation for example gender, smiling, wearing
glasses, and other attributes) and five-points landmark identification was proposed by Zhang et al. [35, 36] in
addition to coarse-to-fine methods.The position conditioned dendritic convolution neural network (PCD-CNN)
[20], developed most recently by Kumar and Chellapa, combines a classification network with a second, modular
classification network to increase detection accuracy. In their groundbreaking work, Duffner and Garcia [13]
established what is now regarded as a straightforward neural network architecture, with just six layers total
input and output. Comparing its application to the other earlier techniques, it performed remarkably well in
situations with changing brightness and stance.

3 Methodology

3.1 Dataset
For our work, we are using a dataset from the Kaggle Facial Keypoints Detection competition [12]. The dataset
consists of 7049 training images with labels and 1783 additional images without labels. Each of size 96x96
pixels in grayscale (0-255). Each keypoint is given as a (x,y) real-valued pair between 0 and 96. The following
components of the face are represented by the 15 keypoints:

Figure 2: Two examples of fully labeled images.

In this context, left and right allude to the subject’s point of view. In total about 50% of all the labels are
missing. The dataset seems to originate from two different sources and can therefore be divided into 2140 clean
datapoints which are fully labeled (Figure 2) and 4909 unclean datapoints which mostly only have 4 of the
15 landmarks (Figure 3). For further computations and training all the missing labels are filled with -1. The
preprocessed data is also stored in fast accessible numpy files.

Figure 3: Two examples of partly labeled images.
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Not only are a big part of the labels missing but the available labels often lack a lot of accuracy (Figure 4).
Especially the ones from the unclean data. Most inaccurate labeled by far are the nose tip and the center of
the bottom lip.

Figure 4: Two examples of poorly labeled images.

Most of the images are shot from a frontal and horizontal perspective without any tilt and the majority the
of people look directly into the camera. Sadly the dataset is lacking diversity with only a few representatives of
BIPoC.

3.1.1 Data augmentations

Generating augmented images allows to have more and different data to train on without the need for collecting
new labeled data. Data augmentations help with overfitting and enables to alter the data to better align
with the intended application of the model. Photometric distortion and geometric distortion are two distinct
data augmentation techniques. Photometric distortion involves changing the contrast, brightness, saturation,
hue, and noise of an image. Whereas geometric distortion is mainly about random scaling, flipping, rotation,
cropping, and translation etc. To get more out of the dataset we have used a handful of data augmentations.
The main goal is to reliably make good predictions on webcam inputs. Therefore we applied rotation, brightness
and contrast, cropping and padding, horizontal flipping and minor perspective augmentations to the whole clean
data individually to imitate real situations with the data available. This adds 5 · 2140 = 10700 datapoints to
the dataset. After that in total the dataset consists of 17749 images. Most of the augmentations are rather
minor. They are supposed to be realistic. For the augmentations of the images and their labels we used the
python library Albumentations [4].

Figure 5: Two examples of augmented images (left: rotated, right: contrast and brightness).

3.2 Model
Convolutional Neural Networks are widely used for tasks ranging from image and video recognition, classifi-
cation and analysis to recommendation systems, time series analysis, natural language processing, and speech
recognition. CNNs offer two key advantages over traditional neural networks: a reduced number of weights
makes them more effective in terms of memory and complexity while also allowing them to learn significant
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features from the input data at various levels [19]. For the purpose of our work, we use a CNN model. It takes
9216 float32 values in the shape of 96× 96× 1 as input and outputs 30 float32 values.

3.2.1 Architecture

For predicting the facial landmark points from the images, we use a rather simple CNN model with few modi-
fications in the layers. Our CNN model has 11 convolution layers each with same padding and without a bias.
Each convolution is followed by a Rectified Linear Unit (ReLU) (alpha: 0.1) and a Batch Normalization. After
every two convolution layers there is one max-pooling layer. And finally to get the 30 output nodes we flatten
everything and use a dense neural network with a dropout with rate 0.1. The model architecture was inspired by
different other architectures for this problem from the kaggle competition but mainly Karan Jakhar’s approach
[11].

The major role of the convolution is feature extraction. It is a mathematical operation to combine two sets of
information. A feature map is produced by applying the convolution to the input data using a convolution filter.
We reduced the number of parameters in the network by using 3x3 convolution. Next as an activation function
we use the ReLU. Since traditional activation functions such as Sigmoid and Tanh produce vanishing gradient,
whereas the unsaturated nonlinear attributes of ReLU are efficient to alleviate the problem [33]. After each
ReLU, we use a Batch Normalization layer (proposed by Ioffe and Szegedy, 2015 [18]). Through a normalization
step that fixes the means and variances of layer inputs, the Batch Normalization layer aids in reducing the
internal covariate shift of the network. Here, the computations of mean and variance are made after each mini-
batch rather than throughout the entire training set. Batch normalization also facilitates the use of increased
learning rates without any risk of divergence, by reducing the dependence of gradient on it’s initial values or
on the size of the parameters [18]. Pooling is done after the convolution operation. Pooling layer down-sample
the feature maps independently, by maintaining the depth while lowering the width and height. Pooling helps
in reducing the dimensionality, this enables in shortening the training time and reduce overfitting. We used
max-pooling in our model, which basically takes the maximum value in the pooling window.

Finally the output from the last pooling layer is the output to the Fully Connected layer. A Fully Connected
layer is a feed-forward neural network. Before passing the input to the Fully Connected layer it needs to be
flattened from a multidimensional matrix to a one-dimensional vector [6] [24] using Flatten layer and then fed
to the Fully Connected layer. Lastly as a regularization technique, Dropout (proposed by Srivastava et al. 2014
[25]) layer is used for preventing overfitting in the network, as Fully Connected layer increase the number of
parameters and they are more prone to overfit themselves by excessively co-adapting. Finally as the whole
architecture contains several hidden layers it is also known as Deep Neural Network.

3.2.2 Optimizer, Loss, Metrics

For training the CNN the in keras built-in pre-implemented Adam optimizer is used which is a stochastic
gradient descent method that is based on adaptive estimation of first-order and second-order moments. Since
we are dealing with specific distances between the predicted coordinates and the true coordinates we are using
the Mean Squared Error (MSE) as the loss function for the training. Additionally to asses the model during
training the mean absolute error and accuracy metrics are also used. The accuracy thereby classifies a prediction
to be correct when its position is within a radius of 2 from the true coordinates.

∥ŷ − y∥ < 2

3.2.3 Masking

Since nearly 50% of the labels are missing, dealing with the unclean data is very important. The model should
still train on the unclean data to learn the few landmarks that are labeled. To only train on the landmarks
available we are masking the output during the calculation of the loss and metrics. The model should not learn
to predict our filling value of -1 when the new input resembles the unclean data. Instead the model should
always predict the location of all 15 landmarks. For that we ignore all the predictions where the true label is -1
(meaning that there is no label for that landmark) for calculating the loss and metrics.

Mathematically written (ŷ ∈ Rn true labels, y ∈ Rn predictions):

Masked Mean Squared Error

l =

∑n
i=0

ŷi ̸=−1
|ŷ − y|2i∑n

i=0
ŷi ̸=−1

1

Masked Mean Absolute Error

l =

∑n
i=0

ŷi ̸=−1
|ŷ − y|i∑n

i=0
ŷi ̸=−1

1
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3.2.4 Training

Our work resulted in four major versions of the model. The latest one version 4 is the best performing one. It
was trained in 40 minutes on a Nvidia Tesla T4 on the Google Cloud over Google Colab. V4 was trained on
the whole dataset including the unclean data and all the augmented data with the following hyperparameters
chosen from experience from the last versions:

Hyperparameter Value
Epochs 100

Validation split 20%
Batch size 256

ADAM learning rate 0.001
Number of images 17749

Besides has all the recent research on CNNs shown that they highly benefit from more training data. The
training is kept rather short and the training history shows no sign of over- or underfitting.

Figure 6: Training history of the fourth version of model.

The training finished with the following results:

masked mean squared error 4.25
masked mean absolute error 1.56

masked accuracy (∥ŷ − y∥ < 2) 62.5%

Over all the different versions we experimented with different amounts of the unclean data to train on and
different amounts of data augmentations. Because we are working with a CNN and are masking the output
more data seems to be generally better. Training with more than 100 epochs with the unclean data effects
the performance negatively. The model overfits and the unclean data becomes a problem. All the missing
landmarks do not effect the loss and for images that resemble the unclean data the model learns to just clump
all the points together in the middle of the face.

Table 1 shows how the different versions of our model are performing based on various epochs and number of
images. The batch size and the validation split for all versions are 256 and 0.2, respectively. Starting with the
model version 2 two key advantages over version 1 are that the training goes way faster and during the training
the loss is masking the output for missing values. On the other hand, rotation-augmented data were used to train
V3, with a slightly bigger dataset. Finally, more augmentation like rotation, horizontal flip, cropping, padding,
perspective, brightness, and contrast was added to V4’s training. Except for version V1, all the versions were
trained on the Colab GPU. The epoch size for V1 was also considerably lower than that of the other versions,
and it was trained using a Ryzen 5 3600 processor, which increased the processing time immensely.

Model Epochs Total Images Time mmse mmae Accuracy
V1 20 7049 43 min - - -
V2 100 7049 15 min 4.3127 1.584 0.5411
V3 100 11329 25 min 3.7041 1.4212 0.6283
V4 100 17749 40 min 4.2459 1.5622 0.6248

Table 1: Comparison of different model versions.
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3.3 Applying the Model to Video Inputs
The model was only trained on images of faces. The face always filled out the whole image. To apply the model
to video input it is first necessary to find the location and size of a face in a given frame and bringing it into
shape to predict on. The model is meant to only predict on the faces and not arbitrary images with different
backgrounds.

3.3.1 Viola-Jones Algorithm

For detecting the face in real time we use Viola-Jones’ algorithm [32]. Viola-Jones’ is a face detection algorithm
that was proposed jointly by Paul Viola and Michael Jones. It is based on three main concepts Integral Image
(uses Haar Feature Selection named after Alfred Haar), AdaBoost and Cascading classifiers.
First a learning algorithm needs to be applied to identify the face. The image frame is divided into a segment of
rectangles. These rectangles are then used by Haar Feature Selection to detect features using detection windows
in the image fragment. The integral image is then constructed by adding the values in a rectangular segment
of the grid. The equation for integral image is given by:

ii =
∑
x′≤x
y′≤y

= i(x′, y′),

As the features of rectangle is adjoining to at least another rectangle, sum of any rectangle feature can be
calculated in four array references using the integral image which can be seen in (Figure 7.a). It would be 6
for two rectangles features, 8 for three rectangles features and so on as shown as in (Figure 7.b). The main
advantage of the integral image is that it makes the calculations much less intensive and save computation time
for any facial detection model.

Figure 7: Viola-Jones algorithm parts: (a) combination of regions, (b) Haar Features, (c) cascade classifier, and
(d) Haarfeature application to the image. [14]

Moving on to training, small number of important features is then selected using AdaBoost [15] to construct
the classifier. Viola Jones slightly modified the original AdaBoost algorithm [27]. It combines classifier series as
a sequence of filters as displayed in (Figure 7.c) which efficiently classifies image regions. Each Haar-like feature
act as a weak learner. Before a feature is included to the final classifier, AdaBoost evaluates the performance of
each classifier. The performance is assessed on all sub-regions of image used for training. Certain sub-regions
deliver a strong reaction to the classifier. Those are recognized as positives, which the classifier thinks it as a
human face. Whereas sub-regions which do not deliver strong reaction are identified as negatives, as it does
not contain human face according to the classifier. Classifiers with the best performance are given more weight
or relevance. The outcome is a strong classifier, also known as a boosted classifier, which incorporates the best
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weak classifiers. Basically the Adaboost algorithm used here sets a minimum threshold to identify whether a
classified feature is useful or not [28].

Lastly, Cascading classifier is another sort of “hack” to boost the speed and increases performance of the
model. It allows background regions of the image to be quickly discarded while spending more computation on
promising face-like regions. For example, an image is discarded immediately for not having a face-like region if
it receives a negative evaluation in the first stage. The cascading classifier can discard an image at any stage
which thereby increases the necessary speed for real-time face detection [23] [28].

4 Evaluation

4.1 On the Dataset
On the dataset itself the model performs very well. It is similar to what other developers achieve with the
same dataset. There is no significant difference between the performance on the dataset with the unclean data
included and not.

Without unclean data (12840 images):

masked mean squared error 2.3
masked mean absolute error 1

masked accuracy (∥ŷ − y∥ < 2) 90.2%

With unclean data (17749 images):

masked mean squared error 2
masked mean absolute error 1

masked accuracy (∥ŷ − y∥ < 2) 91.8%

For most images the performance looks like this:

Figure 8: Model prediction on 20 images from the dataset.

The accuracy is very high and the predicted landmarks fit to the image. Although for some other images
that is of course not the case. Many times the nose tip will be predicted below its actual location and the model
cannot really deal with open mouths. Not because of the bad performance of the model but the inaccurate
labels of many of the images.
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4.2 On Video Inputs
But the performance on the dataset is rather secondary to us though. The goal is to use the model on live
webcam input. To evaluate on actual labeled videos we use labeled videos from the 300-VW dataset [16][17][29].
The videos are all roughly one minute long at about 25-30 frames per second. The dataset has labels for 68
landmarks. Not all of the 15 landmarks from the original training dataset are included in these 68 but are
deductible from surrounding keypoints. For the evaluation we picked four videos that resemble the situation we
were working towards the most that shows the people in front of a webcam or with a similar perspective and
distance. The selected videos are the videos with numbers: 39, 223, 224 and 406. From every video are 20% of
the frames randomly selected. Then we used the Viola-Jones algorithm on those to detect the faces and predict
on them. The results can then be mapped back to the full size of the frame. For the 3174 frames from the four
videos we get the following results:

masked mean squared error 34.7
masked mean absolute error 2.9

masked accuracy (∥ŷ − y∥ < 2) 65%

The high squared error implies that there are probably some bigger outliers but the overall performance with
an accuracy of 65% and an absolute error of 2.9 is good. This can also be shown on the following two examples:

Figure 9: Two examples of model predictions on videos.

At first 65% may not seem like a lot but given the condition of a value being predicted correctly being rather
strict being able to very accurately predict 2/3 of the given landmarks is really good.

5 Discussion
Overall we the model performs well and the project was successful. With what we have right now in terms of
the dataset and model architecture there is nearly no room left to grow. A lot of time went into optimizing
the execution speeds. When dealing with a lot of data the pre-processing, loading, storing and the whole
infrastructure plays a crucial role. That part went very well and we build a solid foundation to apply our
computer vision model to videos.

5.1 Limitations
To even further increase the performance of the model to detect facial landmarks in video inputs there are
some major limitations to overcome. Most of which were already mentioned. By far the biggest drawback in
our experiment was the dataset itself. In total, 50% of all the labels are missing, which makes the training
way less effective. Furthermore, the most pictures just don’t resemble the variety of situations we want to be
able to detect facial landmarks in. The pictures show the faces from a frontal perspective without any tilt or
rotation. The rotation or roll can be easily dealt with by using data augmentations but to imitate tilt/yaw is
impossible. Not only this, for an accessible model to everyone the labeled images also lack diversity with only
a few representations of BIPoC. The amount of good data to train on is the most important part of a CNN
model like ours.
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Another point to consider is the prediction time of the model and the speed of the Viola-Jones algorithm.
Currently the model prediction on a given input takes about 20 milliseconds. For a 30 fps video that works
out great but for a 60 fps video there is only 1000ms

60 ≈ 17ms between every frame. If one wanted to make a
prediction on every frame this becomes an important limitation. For most use cases a detection on every 5th,
10th or even 20th is also fine. The same problem also applies to the Viola-Jones algorithm. We had to limit
the usage of it to every 10th frame.

5.2 Possible Improvements
As the saying goes, there is always room for possible improvements and scope for further research. We know
that in almost every machine learning and deep learning problems, more and better data results in better model
performances. For us a big difference would switching to or including other and better datasets make and also
training on actual labeled videos.

5.3 Carbon Emission
All the training was conducted using Nvidia Telsa T4 GPUs (TDP of 70W) from the Google Cloud Platform
over Google Colab in the region us-east4, which has a carbon efficiency of 0.37 kgCO2eq/kWh. For a cumulative
of about 8 hours of computation the total emissions are estimated to be 0.21 kgCO2eq of which 100 percent
were directly offset by the cloud provider. Estimations were conducted using the Machine Learning Impact
calculator [21].

6 Conclusion
For the purpose of detecting facial points, we suggested an efficient Convolutional Neural Network (CNN)
model. Our experiments demonstrate that deep neural networks for computer vision issues like facial landmark
detection can be integrated with other techniques and algorithms to be applied to video inputs. The evaluation
shows that our model is robust in detecting facial landmarks. Despite the limitations, our model performs
well with a decent accuracy, not only on the static image but also on the video stream. Additionally, data
augmentations, output masking and pre-processing the video feed helps to overcome the limitations of a rather
straitened dataset and achieve high accuracy.
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